

AQA Further Maths A Level Statistics

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Discrete Random Variables and Expectation

Measures of Average and Spread for a Discrete Random Variable

Expectation	$E(X) = \sum_{i} x_i p_i$
Variance	$Var(X) = \sum_{i} x_{i}^{2} p_{i} - (E(X))^{2}$ $= E(X^{2}) - (E(X))^{2}$
Standard Deviation	$\sigma = \sqrt{Var(X)}$
Mode	The value of X which has the largest probability
Median	$P(X \le M) = 0.5$ $P(X \ge M) = 0.5$

Functions of Discrete Random Variables

$$E(aX + b) = aE(X) + b$$
$$Var(aX + b) = a^{2}Var(X)$$

Expectation of a General Function of a Discrete Random Variable

$$E(g(X)) = \sum g(x_i)p_i$$

Discrete Uniform Distribution

$$P(X = x) = \frac{1}{n} \text{ for } x = 1, 2, \dots n$$

$$E(X) = \frac{n+1}{2}$$

$$Var(X) = \frac{n^2 - 1}{12}$$

Poisson Distribution

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

 $X \sim Po(\lambda)$

 $Mean = \lambda$

 $Variance = \lambda$

Sum of Independent Poisson Distribution

When $X \sim Po(\lambda)$, $Y \sim Po(\mu)$ and Z = X + Y:

 $Z \sim Po(\lambda + \mu)$

Type I and Type II Errors

Defining Type I and Type II Errors

Type I Error	H_0 is rejected when it is true
Type II Error	H_0 is not rejected when it is false

In hypothesis testing:

significance level = $P(\text{type I error}) = P(\text{rejecting H}_0|\text{H}_0 \text{ is true})$

Power of a Test and Using Type II Errors

In hypothesis testing:

 $P(\text{type II error}) = P(\text{not rejecting H}_0|\text{ a specific alternative to H}_0)$

Power = 1 - P(type II error)

Continuous Random Variables

Probability Density Function (PDF)

For continuous random variable X with pdf f(x):

$$P(a < x < b) = \int_{a}^{b} f(x) \ dx$$

$$\int_{-\infty}^{\infty} f(x) \ dx = 1$$

$$f(x) \ge 0$$
 for all x

Median and Quartiles of a Given Probability Density Function

Lower quartile (Q_1)	$\int_{-\infty}^{Q_1} f(x) \ dx = \frac{1}{4}$
Median	$\int_{-\infty}^{M} f(x) \ dx = \frac{1}{2}$
Upper quartile (Q_3)	$\int_{-\infty}^{Q_3} f(x) \ dx = \frac{3}{4}$

Expectation and Variance of a Continuous Random Variable

$$E(X) = \int_{-\infty}^{\infty} x f(x) \ dx$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) \ dx$$

$$Var(X) = E(X^2) - (E(X))^2$$

Functions of a Continuous Random Variable

Linear Transformations

E(aX + b) = aE(X) + b $Var(aX + b) = a^{2}Var(X)$

General Function

 $E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x) \ dx$

Expectation and Variance of the Sum of Two Independent Random Variables

$$E(X + Y) = E(X) + E(Y)$$

$$Var(X + Y) = Var(X) + Var(Y)$$

Cumulative Distribution Function

For a continuous distribution:

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$

$$f(x) = \frac{d}{dx} F(x)$$

Rectangular Distribution

For the variable X following a rectangular distribution over [a, b]

$$f(x) = \frac{1}{b-a} \text{ for } a < x < b$$

$$E(X) = \frac{a+b}{2}$$

$$Var(X) = \frac{(b-a)^2}{12}$$

Chi squared Tests for Association

Chi squared Values and Degrees of Freedom

Expected frequency	$E_i = \frac{row \ total \times column \ total}{overall \ total}$
Chi squared value	$\chi_{calc}^2 = \sum_{i} \frac{(O_i - E_i)^2}{E_i}$
Degrees of freedom	$v = (no. of \ rows - 1)(no. of \ columns - 1)$

Condition on Expected Frequency

For $E_i > 5$:

 $\chi^2_{calc} \sim \chi^2_v$

Yates' Correction

For v = 1:

$$\chi_{\text{Yates}}^2 = \sum \frac{(|O_i - E_i| - 0.5)^2}{E_i}$$

Exponential Distribution

Probability Density Function and Cumulative Distribution Function

For $X \sim \exp(\lambda)$

$$f(x) = \lambda e^{-\lambda x}$$
 for $x > 0$

$$F(x) = 1 - e^{-\lambda x}$$

Mean and Variance of an Exponential Distribution

Mean $E(X) = \frac{1}{\lambda}$

Variance $Var(X) = \frac{1}{\lambda^2}$

Inference - One Sample t-Distribution

Testing for the Mean of a Normal Distribution with Unknown Variance

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

Confidence Intervals

Confidence interval for population mean μ

$$(\underline{x} - z \frac{\sigma}{\sqrt{n}}, \underline{x} + z \frac{\sigma}{\sqrt{n}})$$

Width of confidence interval

$$2z\frac{\sigma}{\sqrt{n}}$$

Symmetric Confidence Intervals from Small Samples Using the t-Distribution

For normally distributed sample with a small sample size and estimated variance s^2 , the c% CI for population mean:

$$\bar{x} - t \frac{s}{\sqrt{n}} < \mu < \bar{x} + t \frac{s}{\sqrt{n}}$$

where
$$P(t_v < t) = 0.5 + \frac{\frac{1}{2}c}{100}$$

